发布时间:2024-10-09 浏览量:次
所在部门(必填)51吃瓜网 (系部)智能制造系 (研究所)高端装备系统动力学与智能诊断维护研究所 E-Mail: liuyi_aa1@163.com 个人主页: | |
研究方向 | 旋转机械故障诊断 |
基本介绍 | 刘怡,女,1993年生,讲师,工学博士 |
主要工作经历 | 2023.9—至今,51吃瓜网机电学院专任教师 |
获奖情况 | |
承担项目 | |
学术任职 | |
学术成果 | [1] Liu Yi, Xiang Hang, Jiang Zhansi *, Xiang Jiawei*. Second-order transient-extracting S transform for fault feature extraction in rolling bearings[J]. Reliability Engineering &System Safety, 2023, 230: 108955. [2] Liu Yi, Xiang Hang, Jiang Zhansi *, Xiang Jiawei*. Iterative synchrosqueezing-based general linear chirplet transform for time-frequency feature extraction[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3506711. [3] Liu Yi, Xiang Hang, Jiang Zhansi, Xiang Jiawei*. A domain adaption ResNet model to detect faults in roller bearings using vibro-acoustic data[J]. Sensors, 2023, 23(6): 3068. [4] Liu Yi, Xiang Hang, Jiang Zhansi, Xiang Jiawei*. Refining the time-frequency characteristic of non-stationary signal for improving time-frequency representation under variable speeds[J]. Scientific Reports, 2023,13(1): 5215. [5] Liu Yi, Jiang Zhansi, Huang Haizhou, Xiang Jiawei*. A TEO-based Modified Laplacian of Gaussian filter to detect faults in rolling element bearing for variable rotational speed machine[J]. IET Science Measurement & Technology, 2021, 15(9): 193-203. [6] Liu Yi, Jiang Zhansi, Huang Haizhou, Xiang Jiawei*. Asymmetric penalty sparse model based cepstrum analysis for bearing fault detections[J]. Applied Acoustics, 2020, 165: 107288. [7] Liu Yi, Jiang Zhansi, Xiang Jiawei*. An adaptive cross-validation thresholding de-noising algorithm for fault diagnosis of rolling element bearings under variable and transients conditions[J]. IEEE Access, 2020, 8: 67501-67518. [8] Li Jiahao, Liu Yi, Chen Qian, Xiang Jiawei*. Simulation-driven bandpass filter in association with an optimal bandwidth to detect faults in axial piston pumps[J]. Measurement Science and Technology, 2023, 34(9): 095116. [9] Li Jiahao, Liu Yi, Xiang Jiawei*. Optimal maximum cyclostationary blind deconvolution for bearing fault detection[J]. IEEE Sensors Journal, 2023, 23(14): 15975-15987. |